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Abstract
It is shown that the amplitude for reflection of a Dirac particle with arbitrarily
low momentum incident on a potential of finite range is −1 and hence the
transmission coefficient T = 0 in general. If, however, the potential supports
a half-bound state at momentum k = 0 this result does not hold. In the case of
an asymmetric potential the transmission coefficient T will be nonzero whilst
for a symmetric potential T = 1. Therefore in some circumstances a Dirac
particle of arbitrarily small momentum can tunnel without reflection through a
potential barrier.

PACS numbers: 03.65.Nk, 03.65.Pm, 03.65.Xp

1. Introduction

The results for scattering at arbitrary low energy E in one dimension in the Schrödinger
equation are well known. If the potential V (x) is sufficiently well behaved at infinity, then
the reflection coefficient at zero energy is unity and the transmission coefficient is zero [1]
unless the potential supports a zero energy resonance (a half-bound state). In that case
the transmission coefficient is unity and there is no reflection provided that the potential is
symmetric. Bohm calls this a transmission resonance [2]. These results have been generalized
to asymmetric potentials [3, 4]. In this paper we repeat the analysis for the Dirac equation.
To some extent this has already been done by Clemence [5] in the mathematical literature in
his analysis of the Levinson theorem but we approach the problem as physicists. Our results
show that transmission resonances will occur in the Dirac equation even for the case where
the potential V (x) is everywhere positive and thus represents a potential barrier.

The potentials V (x) we shall consider are smooth and of finite range. In non-relativistic
systems for such potentials, scattering states with continuum wavefunctions have E � 0
whereas bound states with normalizable wavefunctions have E < 0. A half-bound state [6]
or zero energy resonance in non-relativistic scattering occurs when the potential supports a
bound state of energyE = −κ2/2m in the limit κ → 0: the corresponding wavefunction thus
becomes a continuum wavefunction. An example of this is when a square well is sufficiently

0305-4470/02/316645+13$30.00 © 2002 IOP Publishing Ltd Printed in the UK 6645

http://stacks.iop.org/ja/35/6645


6646 P Kennedy and N Dombey

deep to just support the first odd bound state: the resulting wavefunction describes a non-
normalizable half-bound state which corresponds both to a particle of arbitrarily low energy
incident on the potential from the left and also to a particle of arbitarily low energy incident
from the right.

In the relativistic Dirac equation, the notion of half-bound states is more subtle. For a free
Dirac particle, there exists a gap E � |m| which separates the positive and negative energy
continuum states: the positive energy states correspond to particle states and the absence of
negative energy states (hole states) describes anti-particles. On the introduction of a potential
V (x) this gap becomes distorted and bound states now occur between E = −m and E = m.
A potential which is attractive to particles and supports a half-bound state at E = −m or a
potential which is attractive to anti-particles and supports a half-bound state atE = m is called
a supercritical potential: thus the Dirac equation has half-bound states at both E = −m and
E = m in contrast to the Schrödinger equation where these only exist at E = 0. It follows
also that we should talk of zero momentum resonances in the relativistic case rather than zero
energy resonances.

In the following sections we discuss the one-dimensional Dirac equation using a two-
component approach and establish the formalism needed for the consideration of scattering
and bound states. We will then prove that Dirac particles with energy E > m and arbitrarily
small momentum incident on a potential of finite range will be completely reflected unless the
lower component of a particular wavefunction vanishes. If the potential supports a half-bound
state at the threshold energy E = m this condition is shown to be satisfied. In this case there
will be a nonzero transmission coefficient in general whilst for a symmetric potential, there
will be a transmission resonance: the particle will tunnel without reflection. In particular, we
confirm our previous result [7] that solutions of the Dirac equation exist in which a particle of
arbitrarily small momentum can tunnel completely through a potential barrier. In the appendix
we illustrate our results by considering an asymmetric potential which is soluble analytically.

2. The two-component approach

Following an earlier paper [8] we take the gamma matrices γx and γ0 to be the Pauli matrices
σx and σz, respectively. Then the Dirac equation for scattering of a particle of energy E and
momentum k by the potential V (x) is(

σx
∂

∂x
− (E − V (x))σz +m

)
ψ = 0. (1)

We write

ψ(x) =
(
f (x)

g(x)

)
(2)

to obtain the coupled differential equations

f ′(x) = −(E − V (x) +m)g(x) (3a)

g′(x) = (E − V (x)−m)f (x). (3b)

For a free Dirac particle of momentum k the solution is ψ = (
A

B

)
eikx where k2 = E2 −m2 and

A =
(

ik

E −m

)
B = i

√
E +m

E −m
B =

(
E +m

−ik

)
B. (4)
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Suitable choices for A and B will facilitate future calculations. For threshold problems where
E → m, choosing B = −ik leads to A = E +m and the free particle wavefunction ψ can be
written apart from a normalization factor as

ψ =
(
E +m
−ik

)
eikx . (5)

It is clear that in this form the top and bottom components do not simultaneously tend to zero
as E → m, k → 0. If on the other hand we were interested in threshold wavefunctions where
E → −m then choosing B = E −m leads to A = ik and the free wavefunction can now be
written (again up to normalization) as

ψ =
(

ik
E −m

)
eikx . (6)

3. S-matrix formalism for the one-dimensional Dirac equation

The S-matrix formalism for scattering in one dimension for the Schrödinger equation is well
known and covered in a large number of texts (e.g. [1, 9]). The same arguments are applicable
for the Dirac equation in one dimension [5, 10] and here we will summarize a number of the
more important results in the context of a relativistic equation.

We adopt the usual formalism for a Dirac particle incident from the left scattering off
the piecewise continuous potential V (x) of finite range where V = 0 for |x| � ξ where the
asymptotic solution ψl(x) of equations (3) for particles incident from the left with momentum
k and energy E using equation (5) is

ψl →
(
E +m
−ik

)
eikx + l(k)

(
E +m

ik

)
e−ikx x → −∞ (7)

which defines the (left) reflection amplitude l(k). We can also define the (left) transmission
amplitude tl (k)

ψl → tl(k)

(
E +m
−ik

)
eikx x → ∞. (8)

We can similarly define the asymptotic wavefunction for particles incident from the right as

ψr → tr (k)

(
E +m

ik

)
e−ikx x → −∞ (9)

ψr →
(
E +m

ik

)
e−ikx + r(k)

(
E +m
−ik

)
eikx x → ∞ (10)

thus defining the right reflection and transmission coefficients r(k), tr (k).
The left scattering coefficients and the right coefficients can be simplified further. If we

had two independent solutions of the Dirac equation,

ψ1 =
(
f1(x)

g1(x)

)
ψ2 =

(
f2(x)

g2(x)

)
(11)

then the Wronskian of the solutions ψ1, ψ2 of the first-order linear differential equations of
equations (3), defined as [11]

W [ψ1, ψ2](x) = f1(x)g2(x)− f2(x)g1(x) (12)



6648 P Kennedy and N Dombey

would satisfy W ′(x) = 0, with W(x) is constant and nonzero. (When k = 0 it is easy to see
that any two solutions are not independent and W = 0.) We can now evaluate the Wronskian
W(ψl, ψr)(x) as x → ±∞ to give

tl(k) = tr (k) = t (k). (13)

So there is only one transmission coefficient t (k).
The general solution of the Dirac equationψ(x) can thus be written as a linear combination

of ψl and ψr :

ψ = Aψl + Bψr . (14)

The asymptotic solutions are now found to be

ψ → A

(
E +m
−ik

)
eikx + B̃

(
E +m

ik

)
e−ikx x → −∞ (15)

ψ → Ã

(
E +m
−ik

)
eikx + B

(
E +m

ik

)
e−ikx x → ∞ (16)

where

Ã(k) = At(k) + Br(k) B̃(k) = Al(k) + Bt(k). (17)

The coefficientsA and B are the amplitudes of the incoming waves for particles arriving from
x → −∞ and x → ∞, respectively. Conversely, the coefficients Ã and B̃ are the coefficients
of the outgoing waves for the transmitted or reflected particles. We can now introduce the
matrix S(k) which allows us to calculate the outgoing amplitudes in terms of the incoming
amplitudes (

Ã

B̃

)
= S(k)

(
A

B

)
⇒ S(k) =

(
t (k) r(k)

l(k) t (k)

)
. (18)

The flux j is given by

j = ψ(x)γxψ(x) = iψ(x)σxψ = iψ(x)σzσxψ = −ψ†(x)σyψ(x). (19)

Using equations (15) and (16) we consequently find that

j = 2k(E +m)(|A|2 − |B̃|2) x → −∞
(20)

j = 2k(E +m))(|Ã|2 − |B|2) x → ∞.

The conservation of flux gives us the condition

|A|2 + |B|2 = |Ã|2 + |B̃|2. (21)

Also

|Ã|2 + |B̃|2 = (Ã∗B̃∗)
(
Ã

B̃

)
= (A∗B∗)S(k)†S(k)

(
A

B

)
= |A|2 + |B|2.

HenceS(k) is a unitary 2×2 matrix. From equation (18), this imposes the following conditions
on the matrix elements of S(k):

T (k) + L(k) = T (k) + R(k) = 1 (22)

t (k)r∗(k) + t∗(k)l(k) = t∗(k)r(k) + t (k)l∗(k) = 0 (23)

whereT (k) = |t (k)|2 is the transmission coefficient,L(k) = |l(k)|2 is the reflection coefficient
for a particle incident from the left andR(k) = |r(k)|2 is the reflection coefficient for a particle
incident from the right. It also follows that

|l(k)| = |r(k)|. (24)
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Additionally, if the potential is symmetric, i.e. V (x) = V (−x) (see section 4.4), then
ψ ′(x) = σzψ(−x) is also a solution (this is equation (57)). The asymptotic wavefunction
ψ ′(x) can be found from ψ(x) using equations (15) and (16) by the substitutions A ↔ B and
Ã ↔ B̃. This implies that S(k) must also be symmetric and consequently

r(k) = l(k) (25)

in this case.
The last property we wish to illustrate is the behaviour of the amplitudes t (k), l(k) and

r(k) at k = 0. By taking the complex conjugate of equations (2)–(5) with negative momentum
−k, we see that ψ∗

l,r (−k, x) has the same form as ψl,r (k, x). This in turn implies that

t∗(−k) = t (k) l∗(−k) = l(k) r∗(−k) = r(k). (26)

So we see from equation (26) that all the amplitudes l(0), r(0), t (0) are real. This will be
of importance for the next section. We also have from equation (23) that

r(0) = −l(0) or t (0) = 0. (27)

It follows from equations (25) and (27) that for symmetric potentials

r(0) = l(0) = 0 or t (0) = 0. (28)

We discuss this further in section 4.4.

4. Reflection and transmission properties at zero momentum

4.1. The general case

Our approach will follow that presented for the Schrödinger equation by Senn [12]. When
a Dirac particle is incident from the left scattering on the potential V (x) of finite range so
that V (x) = 0 for |x| � ξ , the solution ψs of equations (3) in region I x � −ξ for particles
incident from the left with momentum k and energy E is just

ψs = ψl =
(
E +m
−ik

)
eikx + l(k)

(
E +m

ik

)
e−ikx x � −ξ. (29)

Similarly, in region III x > ξ

ψs = ψl = t (k)

(
E +m
−ik

)
eikx x � ξ. (30)

For k �= 0 we can define two independent solutions of equations (3) by, for example,

ψL =
(
E +m
−ik

)
eikx x → −∞ (31)

ψR =
(
E +m

ik

)
e−ikx x → ∞ (32)

which represent purely incoming particles from the left and right, respectively. By taking
appropriate linear combinations of ψL,ψR and normalizing we can choose two new
independent solutions of equations (3)

ψ1 =
(
f1(x)

g1(x)

)
ψ2 =

(
f2(x)

g2(x)

)
(33)

with the properties

g1(−ξ) = 0 g2(−ξ) = 1 f1(−ξ) = 1 f2(−ξ) = 0. (34)
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Note that the solutionsψ1 andψ2 which satisfy equation (34) are everywhere real provided
that k is real. We can then express our solution ψs in terms of a linear combination of ψ1 and
ψ2 for all x and in particular in region II |x| � ξ

ψs = b

(
f1(x)

g1(x)

)
+ c

(
f2(x)

g2(x)

)
−ξ � x � ξ. (35)

We can evaluate the Wronskian of the solutions ψ1, ψ2, which is constant at the point
x = −ξ , to give

W [ψ1, ψ2] = W(−ξ) = f1(−ξ)g2(−ξ)− f2(−ξ)g(−ξ) = 1

thus confirming that the solutions ψ1, ψ2 are independent for k �= 0.
The wavefunctionψs(x)must be continuous at x = −ξ and x = ξ . The overlaps between

regions I and II and between II and III then give the following boundary conditions:

(E +m)(e−ikξ + l(k) eikξ ) = b (36a)

−ik(e−ikξ − l(k) eikξ ) = c (36b)

(E +m)t(k) eikξ = bf1(ξ) + cf2(ξ) (36c)

−ikt (k) eikξ = bg1(ξ) + cg2(ξ). (36d)

For simplicity, write αi = fi(ξ) and βi = gi(ξ), so that the last two equations become

(E +m)t(k) eikξ = bα1 + cα2 (37a)

−ikt (k) eikξ = bβ1 + cβ2. (37b)

Note that b and c are dependent on k as are αi and βi. Eliminating t, b and c and then
rearranging to solve for l give

l(k) =
(
k2α2 + (E +m)2β1 + ik(E +m)(α1 − β2)

k2α2 − (E +m)2β1 − ik(E +m)(α1 + β2)

)
e−2ikξ . (38)

Similarly, t can be found to be

t (k) = −2ik(E +m)(α1β2 − α2β1)

k2α2 − (E +m)2β1 − ik(E +m)(α1 + β2)
e−2ikξ . (39)

We can then use the relation

W(ξ) = f1(ξ)g2(ξ)− f2(ξ)g1(ξ) = α1β2 − α2β1 = 1 (40)

to simplify equation (39). It is a straightforward exercise to verify that equations (38) and (39)
satisfy the unitarity condition (22).

We can now discuss the limit as k → 0. It is apparent from equations (38) and (39) that
provided β1(0) �= 0 the limit E → m, k → 0 gives

l(0) = r(0) = −1 t (0) = 0 (41)

so that the reflection coefficientsL(0) = R(0) = 1 and the transmission coefficient T (0) = 0.
These results in the general case agree with those for the Schrödinger equation [3, 4].

Using equations (33a) and (33b) it can be seen that b(0) = c(0) = 0 in the k = 0 limit
and therefore from equation (35) the wavefunction vanishes identically for all x. Thus the
only physical solution of the Dirac equation (1) for k = 0 is the solution

ψ(x, k = 0) = 0 (42)

unless the potential has special properties which we investigate in the next section.
It should also be noted that as fi(x) and gi(x) are real at x = ξ , the quantities αi(k)

and βi(k) are also real. Hence from equation (39) as k → 0, t (k) is purely imaginary as it
approaches zero in agreement with the Levinson theorem [5] for the Dirac equation provided
β1(0) �= 0.
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4.2. The special case β1(0) = 0

If we return to equations (33b) and (34b) we see that as k → 0 we must have

c(0) = 0 b(0)β1(0) + c(0)β2(0) = 0

so

b(0)β1(0) = 0. (43)

Furthermore since c(0) = 0, we must have from equation (34a)

2mt(0) = b(0)α1(0). (44)

When b(0) = 0 as well as c(0) = 0 we obtain the general case already discussed. If
β1(0) = 0, however, then as we approach the limit E → m, k → 0 the reflection amplitude
l(k) does not satisfy l(0) = −1 and so the wavefunction ψ(x, k = 0) �= 0. In this case
we therefore have non-trivial solutions of the Dirac equation at k = 0. This implies that
transmission coefficient t (0) will be nonzero in this limit as will α1(0).

For k → 0 with β1(0) = 0 we can write β1(k) = kβ ′
1(0) . So from equation (38)

l(0) = lim
k→0

β2 − α1 + 2mβ ′
1(0)i

β2 + α1 + 2mβ ′
1(0)i

. (45)

As k is arbitrarily small (and not actually equal to zero), the WronskianW = α1β2 = 1+O(k),
so β2 = 1/α1 +O(k) and in the limit k → 0 we have

l(0) = 1 − α2
1(0) + 2miα1(0)β ′

1(0)

1 + α2
1(0)− 2miα1(0)β ′

1(0)
. (46)

We know however from equation (26) that l(0) must be real. From equation (46) this means
that either β ′

1(0) = 0 or α1(0) = 0. But since we are considering the non-trivial case where
ψ(x, k = 0) �= 0 (and hence we expect that t (0) �= 0) we do not want α1(0) = 0 since from
equation (44) this would imply that t (0) = 0. Thus we would like to be able to show that

β ′
1(0) = 0 (47)

and β1(k) = O(k2). This is not difficult to demonstrate using an argument of Lin [13]: the
wavefunction ψ1 of equation (11) is a solution of equations (3) subject to the k-independent
boundary conditions given by equation (34). So its lower component

g1(x, k) = g1(x,E) (48)

since the Dirac equation (3) involves E explicitly, not k. It follows that

β1 = β1(E) (49)

which requires β1 to be an even function of k and in particular that as E =
√
m2 + k2

dβ1(k)

dk
= dβ1(E)

dE

dE

dk
= k

E

dβ1(E)

dE
= 0 (50)

at k = 0 in agreement with equation (47).
This gives the final result for the reflection amplitudes in the special case when β1(0) = 0:

l(0) = −r(0) = 1 − α2
1(0)

1 + α2
1(0)

(51)

and for the corresponding transmission amplitude from equation (39):

t (0) = 2α1(0)

1 + α2
1(0)

. (52)

These results agree with those obtained by Clemence [5].
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4.3. Half-bound state

We will now show that if the potential were to support a bound state in the limit E = m

then β1(0) = 0 so the scattering wavefunction will not vanish in the limit k → 0. For an
asymmetric potential the following bound state wavefunction is appropriate for |x| � ξ :

region I ψb = s

(
E +m
−κ

)
eκx x � −ξ

(53)

region III ψb = s′
(
E +m
κ

)
e−κx x � ξ.

If the potential is such that the wavefunction ψb possesses a well-defined nonzero limit as
E → m, κ → 0, then the wavefunction for |x| � ξ in this limit is just proportional to(

2m
0

)
(54)

albeit with different constants of proportionality s, s ′ on the left and right. It is clear that a
wavefunction of this form is non-normalizable and forms part of the continuum.

The scattering solutions ψs which tend to the solutions (54) in the zero-momentum
limit will therefore have a lower component which vanishes for sufficiently large |x|. From
equation (35) this implies that at x = ξ

b(0)β1(0) + c(0)β2(0) = 0 (55)

while at x = −ξ using equation (34) we have c(0) = 0. Since ψs(k = 0) is not zero for a
half-bound state, b(0) �= 0 and hence

β1(0) = 0. (56)

An example of a half-bound state in an asymmetric potential is given in the appendix
together with an explicit demonstration that β1(k) is of order k2 for small k when the condition
β1(0) = 0 holds.

4.4. Symmetric potentials

When the potential is symmetric so that V (x) = V (−x)we can find more stringent conditions
on l(0), r(0) and t (0). In the two-component approach, the behaviour of the wavefunction
under the parity transformation x → −x is given by

ψ ′(−x, t) = σzψ(x, t). (57)

It follows that we can define an even wavefunction ψ+(x) under parity as one with an even
top component and an odd bottom component whereas an odd wavefunction ψ−(x) has an
odd top component and an even bottom component. The wavefunctionψb for the bound state
given in equation (53) must now be either an even solutionψ+ or an odd solution ψ−. First let
us assume that it is even.

Then in the limit of a half-bound state at E = m (κ → 0) the solution remains even. As
k → 0 the scattering solution ψs will also be even. Thus from equations (7) and (8) we have

1 + l(0) = t (0). (58)

From the unitarity relation we also know that

l(0)2 + t (0)2 = 1 = l(0)2 + (1 + l(0))2

therefore

l(0)2 + l(0) = 0. (59)
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So either l(0) = 0 or l(0) = −1 in agreement with equation (28). We know that l(0) �= −1
as ψs(k = 0) �= 0. Hence

l(0) = 0 (60)

and the transmission coefficient

T (0) = 1. (61)

Using equation (52) we see that for an even half-bound state we must have α1(0) = 1 while
for an odd half-bound state we have α1(0) = −1.

So we obtain the result that when a symmetric potential supports a half-bound state, a
transmission resonanceT = 1 occurs for an incident particle with arbitrarily small momentum.
This agrees with our previous result for reflectionless scattering by a repulsive potential V (x)
where its attractive counterpart U(x) = −V (x) is supercritical [7], that is to say U(x) has a
half-bound state atE = −m. To see this note that equations (3) are invariant under the (charge
conjugation) transformation

E → −E V → −V f → g g → f (62)

so it follows that V (x) has a half-bound state at E = m when U(x) has a half-bound state at
E = −m.

5. Discussion

We have now generalized the results for scattering in one dimension in the Schrödinger
equation to the Dirac equation as we intended. But we are physicists not mathematicians:
consequently our results are not yet as complete as those proved for the Schrödinger equation.
Clemence [5], however, has shown that the class of potentials for which our results are true in
the Dirac equation can be extended to include potentials which do not vanish for |x| � ξ. His
results require the potentials V (x) to satisfy∫ ∞

−∞
(1 + |x|)|V (x)| dx < ∞. (63)

As stated in the introduction a half-bound state atE = m can arise in two ways in the Dirac
equation. These can most easily be distinguished by the examples of an attractive well for
which V (x) � 0 and a repulsive barrier for which V (x) � 0, although it may be more difficult
to characterize which is which for a complicated potential. In the case of an attractive potential
a half-bound state with E = m corresponds to a non-relativistic zero energy resonance. For
example in the case of a square well V (x) = −V0, |x| � a, V (x) = 0 elsewhere, one occurs
at the threshold for the first odd state V0 = π2/2ma2. In the case of a repulsive potential
a half-bound state occurs as we have just seen when the corresponding attractive potential
U(x) = −V (x) is supercritical. For the square barrier V (x) = V0, |x| � a, V (x) = 0
elsewhere, supercriticality first occurs when V0 = m+

√
m2 + π2/4a2 [8]. Note that V0 > 2m

before supercriticality can occur.
Over 70 years ago Klein [14] discovered that a Dirac particle could tunnel through a

potential barrier V with V > 2m. In this paper we have confirmed that tunnelling will always
occur in the Dirac equation if a potential barrier V (x) of short range is strong enough so
that U(x) = −V (x) is supercritical. The generic phenomenon whereby fermions can tunnel
through barriers without exponential suppression we have called ‘Klein tunnelling’ [15]. Even
strong long range repulsive potentials in the Dirac equation seem to have this property: in three
dimensions Hall and one of us (ND) [16] have shown that Klein tunnelling is also associated
with supercriticality for Coulomb potentials.
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Appendix

In order to illustrate scattering off an asymmetric potential we shall consider one of the few
examples which can be solved analytically. We shall use a double delta potential barrier which
comprises two unequal Dirac delta functions:

V (x) = λδ(x) + µδ(x − a) (64)

where λ �= µ and λ, µ > 0.

A.1. Scattering coefficients

The wavefunction for x < 0 is

ψ(x) =
(
E +m
−ik

)
eikx + l

(
E +m

ik

)
e−ikx (65)

while for 0 < x < a it is

ψ(x) = α

(
E +m
−ik

)
eikx + β

(
E +m

ik

)
e−ikx (66)

and for x > a

ψ(x) = t

(
E +m
−ik

)
eikx . (67)

The discontinuity condition on ψ(x) at the first barrier at x = 0± is [8]

ψ(0+) = eiλσ2ψ(0−) =
(

cosλ sin λ
− sin λ cos λ

)
ψ(0−). (68)

The second discontinuity condition at x = a± is derived by replacing 0± with a± and λ
with µ.

The reflection and transmission amplitudes l and t can then be calculated to give

l = − imk(cosµ sinλ + e2iak cos λ sinµ) +mE(e2iak − 1) sinλ sinµ

m2(e2iak − 1) sinλ sinµ + k2 cos(λ + µ) + iEk sin(λ + µ)
(69)

and

t = k2

m2(e2iak − 1) sinλ sinµ + k2 cos(λ + µ) + iEk sin(λ + µ)
. (70)

Using E =
√
k2 +m2 we can write for small k

l = −im(sin(λ + µ) + 2ma sin λ sinµ) + 2amk(am sinλ sinµ + cos λ sinµ) +O(k2)

im(sin(λ + µ) + 2ma sin λ sinµ) + k(cos(λ + µ)− 2a2m2 sinλ sinµ) +O(k2)
(71)

t = k

im(sin(λ + µ) + 2ma sin λ sinµ) + k(cos(λ + µ)− 2a2m2 sin λ sinµ) +O(k2)
. (72)

From equations (71) and (72) it is easy to see that in general as k → 0

l → −1 t → 0 (73)
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in agreement with equation (41). If however

sin(λ + µ) + 2ma sinλ sinµ = 0 (74)

then

l → − am sin(λ− µ)

cos(λ + µ) + am sin(λ + µ)
(75)

and

t → 1

cos(λ + µ)− 2a2m2 sinλ sinµ
. (76)

It is easy to show that l and t given above do indeed satisfy

|l|2 + |t|2 = 1

provided that sin(λ + µ) + 2ma sinλ sinµ = 0.

A.2. Exceptional case

The exceptional case in the proof above occurs when β1(0) = 0. We shall therefore calculate
α1(0) and β1(0) for the double delta potential. From equation (34) we consider the solution of
the Dirac equation which takes the values

(1
0

)
at x = −ξ . The wavefunction ψ(x) for x < 0

thus has the form

(E +m)ψ(x) =
(
(E +m) cos k(x + ξ)

k sin k(x + ξ)

)
(77)

while for 0 < x < a it is

(E +m)ψ(x) = γ

(
(E +m) cos kx

k sin kx

)
+ δ

(
(E +m) sin kx

−k cos kx

)
(78)

and for x > a we can write

(E +m)ψ(x) = σ

(
(E +m) cos k(x − ξ)

k sin k(x − ξ)

)
+ τ

(
(E +m) sin k(x − ξ)

−k cos k(x − ξ)

)
. (79)

So at x = ξ we see that

α1(k) = σ β1(k) = −kτ/(E +m). (80)

For small k we calculate from the discontinuity conditions that

σ = [cos(λ + µ) + 2mξ sin(λ + µ)− 2ma sinµ cosλ + 4am2(ξ − a) sinµ sin λ] +O(k2)

(81)

and

kτ = 2m[(sin(λ + µ) + 2am sinλ sinµ)] +O(k2). (82)

Note that neither σ nor kτ has any term of order k. As k → 0 we obtain

β1(0) = −[(sin(λ + µ) + 2am sinλ sinµ)] β ′
1(0) = 0

so the exceptional case given by equation (74) above indeed satisfies β1(0) = 0. Furthermore
when β1(0) = 0 it is easy to see that

α1(0) = cos(λ + µ)− 2am sinµ(cosλ + 2am sinλ). (83)

From equation (52) the transmission coefficient in the exceptional case when

β1(0) = −[(sin(λ + µ) + 2am sinλ sinµ)] = 0



6656 P Kennedy and N Dombey

can be expressed in terms of α1(0):

t = 2α1(0)

1 + α2
1(0)

. (84)

After some tedious manipulation we find that

1 + [α1(0)]2 = 2(1 + 2am sinλ cos λ + 2a2m2 sin2 λ)

= 2(cos(λ + µ) + 2am sinλ cosµ)(cos(λ + µ)− 2a2m2 sinλ sinµ)

= 2α1(0)(cos(λ + µ)− 2a2m2 sin λ sinµ). (85)

So

t = 2α1(0)

2α1(0)[cos(λ + µ)− 2a2m2 sin λ sinµ]
(86)

in agreement with equation (76). Similarly it can be shown that equation ( 75) for the reflection
coefficient agrees with equation (51).

A.3. Bound states

Let us now consider the asymmetric potential well

U(x) = −V (x) = −λδ(x)− µδ(x − a). (87)

This will have bound states with a wavefunction for x < 0 of the form

ψ(x) =
( −κ
m− E

)
eκx (88)

while for 0 < x < a

ψ(x) = γ

( −κ
m− E

)
eκx + δ

(
κ

m− E

)
e−κx (89)

and for x > a

ψ(x) = s

(
κ

m− E

)
e−κx. (90)

The discontinuity condition for the first delta well is

ψ(0+) = e−iσ2λψ(0−) =
(

cosλ − sin λ
sinλ cosλ

)
ψ(0−). (91)

Note that this differs from the condition for barriers only in that λ → −λ. The second
discontinuity condition follows with 0± → a± and λ → µ. This leads to the following four
equations:

κ(−γ + δ) cos λ + (m− E)(γ + δ) sinλ = −κ (92a)

−(m− E)(γ + δ) cos λ− κ(−γ + δ) sinλ = m− E (92b)

κ(−γ eaκ + δ e−aκ) cosµ + (m− E)(γ eaκ + δ e−aκ) sinµ = sκ e−aκ (92c)

(m− E)(γ eaκ + δ e−aκ) cosµ + κ(−γ eaκ + δ e−aκ) sinµ = s(m− E) e−aκ (92d)

where γ and δ can be found from the first two equations (88a) and (88b) to be

γ = −E sin λ− κ cos λ

κ (93)
δ = −m sinλ

κ
.
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Eliminating s from (88c) and (88d) leads to

γ e2aκ(κ cosµ− E sinµ) + δm sinµ = 0. (94)

We thus obtain

e2aκ(κ cosλ− E sin λ)(κ cosµ− E sinµ)−m2 sinλ sinµ = 0. (95)

Rearranging gives

sin(λ + µ) = κ2 e2aκ cosλ cosµ + (e2aκE2 −m2) sin λ sinµ

Eκ e2aκ
. (96)

At supercriticality E = −m, κ = 0 giving

sin(λ + µ) + 2ma sinλ sinµ = 0 (97)

in agreement with the exceptional condition β1(0) = 0.
When λ = µ we obtain a symmetric potential. If sin(λ + µ) + 2ma sin λ sinµ = 0

then either sin λ = 0 and α1(0) = 1 or tan λ = −1/ma and α1(0) = −1. In both cases the
transmission coefficient T = 1 in agreement with our previous result [7] for supercritical
symmetric potentials.
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